Economics Letters 1 (2014) 1-2

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Corrigendum to "Reconciling the Rawlsian and the utilitarian approaches to the maximization of social welfare" [Economics Letters 122 (2014) 439–444]

Oded Stark^{a,b,c,d,*}, Marcin Jakubek^b, Fryderyk Falniowski^e

^a University of Bonn, Germany

^b University of Klagenfurt, Austria

^c University of Vienna, Austria

^d University of Warsaw, Poland

^e Cracow University of Economics, Poland

ARTICLE INFO

Article history:

Subsection 3.1. (pp. 441–442) of the originally published article analyzes the optimal choice of a Rawlsian social planner (RSP). The originally published subsection did not cover all possible cases, and the proof that a RSP will choose to equalize incomes is incomplete. The text that follows replaces that subsection.

3.1. The maximization problem of a Rawlsian social planner

The maximization problem of a RSP is

 $\max_{\Omega(a_1,...,a_n;\lambda)} SWF_R(x_1,...,x_n)$

$$= \max_{\Omega(a_1,...,a_n;\lambda)} \{ \min\{u_1(x_1,...,x_n),...,u_n(x_1,...,x_n)\} \}.$$
 (3)

It is easy to see that for every $k \in \{1, ..., n-1\}$ we have that

 $u_i(x_1,...,x_k,x_{k+1},...,x_n) = u_i(x_1,...,x_{k+1},x_k,...,x_n)$

for $i \in \{1, ..., n\} \setminus \{k, k+1\}$, and that

 $u_k(x_1,...,x_k,x_{k+1},...,x_n) = u_{k+1}(x_1,...,x_{k+1},x_k,...,x_n).$

Therefore, if $x_1 \le ... \le x_n$, then the monotonicity of the f function and the definition of the RI function imply that $u_1(x_1,...,x_n) \le u_2(x_1,...,x_n) \le ... \le u_n(x_1,...,x_n)$. Thus, for any k such that $y_k = \min\{y_1,...,y_n\}$, we have that $SWF_R(y_1,...,y_n) = u_k(y_1,...,y_n)$.

Denoting by $(x_1^{R^*}, ..., x_n^{R^*})$ the optimal post-transfer distribution of incomes of a RSP, we have that

 $\max_{\Omega(a_1,...,a_n;\lambda)} SWF_R(x_1,...,x_n) = u_1(x_1^{R^*},...,x_n^{R^*}),$

http://dx.doi.org/10.1016/j.econlet.2014.03.003 0165-1765/© 2014 Elsevier B.V. All rights reserved. where $x_1^{R^*} = ... = x_n^{R^*}$. We prove this claim by contradiction. To do that, we assume that $(x_1^{R^*}, ..., x_n^{R^*}) \in \Omega(a_1, ..., a_n; \lambda)$ is such that $\underline{x} = \min\{x_1^{R^*}, ..., x_n^{R^*}\} < \max\{x_1^{R^*}, ..., x_n^{R^*}\}$, and we show that there exists $(y_1, ..., y_n) \in \Omega(a_1, ..., a_n; \lambda)$ such that $SWF_R(y_1, ..., y_n)$ $> SWF_R(x_1^{R^*}, ..., x_n^{R^*})$. Therefore, $(x_1^{R^*}, ..., x_n^{R^*})$ cannot be a maximum. Let $I = \{i \in \{1, ..., n\} : x_i^{R^*} = \underline{x} \land x_i^{R^*} \ge a_i\}$, $J = \{i \in \{1, ..., n\} : x_i^{R^*} = \underline{x} \land x_i^{R^*} < a_i\}$, $\overline{x} = \min\{x_i : i \notin I \cup J\}$, $k = \min\{i \in \{1, ..., n\} : x_i^{R^*} = \overline{x}\}$, $K = I \cup J \cup \{k\}$, and $h = |I \cup J|$, where the notation |A| stands for the cardinality of the set A. Obviously, from the characteristics of the point $(x_1^{R^*}, ..., x_n^{R^*})$, it follows that $I \cup J \neq \emptyset$ and that $h \ge 1$. Let δ be such that $0 < \delta < \min\{\lambda(\overline{x} - \underline{x})/2, \min_{i \in K: a_i \neq x_i^{R^*}}\{|a_i - x_i^{R^*}|\}\}$. We now define the coordinates of the point $(y_1, ..., y_n)$ as

$$y_{i} = \begin{cases} x_{i}^{R^{*}} + \delta/h & \text{for } i \in I \cup J, \\ x_{i}^{R^{*}} - \delta_{k} & \text{for } i = k, \\ x_{i}^{R^{*}} & \text{for } i \in \{1, ..., n\} \setminus K. \end{cases}$$

where $\delta_k = \delta(|I| + \lambda|J|)/(\lambda h)$ if $x_k^{\mathbb{R}^*} \le a_k$, and $\delta_k = \delta(|I| + \lambda|J|)/h$ otherwise. It is easy to verify that $(y_1, ..., y_n) \in \Omega(a_1, ..., a_n; \lambda)$.

Because the *f* function is an increasing function, and because a smaller difference between incomes implies a smaller value of the index of low relative income, it follows that for any $i \in I \cup J$

$$SWF_{R}(y_{1},...,y_{n}) - SWF_{R}(x_{1}^{R^{*}},...,x_{n}^{R^{*}})$$

$$= u_{i}(y_{1},...,y_{n}) - u_{i}(x_{1}^{R^{*}},...,x_{n}^{R^{*}})$$

$$= (1 - \beta) \left[f(x_{i}^{R^{*}} + \delta/h) - f(x_{i}^{R^{*}}) \right]$$

$$- \beta \left[RI(x_{i}^{R^{*}} + \delta/h;y_{1},...,y_{n}) - RI(x_{i}^{R^{*}};x_{1}^{R^{*}},...,x_{n}^{R^{*}}) \right] > 0$$

DOI of original article: http://dx.doi.org/10.1016/j.econlet.2013.11.019.

^{*} Correspondence to: ZEF, University of Bonn, Walter-Flex-Strasse 3, D-53113 Bonn, Germany.

E-mail address: ostark@uni-bonn.de (O. Stark).

for any $\beta \in [0,1)$ and $0 < \lambda \le 1$. Therefore, $SWF_R(y_1,...,y_n) > SWF_R(x_1^{R^*},...,x_n^{R^*})$, which contradicts the fact that SWF_R attains a global maximum at $(x_1^{R^*},...,x_n^{R^*})$. Thus, the solution of the problem of a Rawlsian social planner, (3), has to be a transfer such that the post-transfer incomes are all equal. This completes the proof by contradiction.

It is worth noting that the solution of (3) is unique. To show this, we assume that $a_1 < a_n$, and we let

$$g(x) = \frac{\sum_{i=1}^{n} \max\{x - a_i, 0\}}{\sum_{i=1}^{n} \max\{a_i - x, 0\}}$$

for $x \in [a_1, a_n)$. Then, as a ratio of a continuous, strictly increasing function and a continuous, strictly decreasing and positive function, *g* is continuous and strictly increasing, and $g(a_1) = 0$, $\lim_{x \to a_n} g(x) = \infty$. Therefore, there exists a unique $x^{\mathbb{R}^*} \in (a_1, a_n)$

such that
$$g(x^n) = \lambda$$
, which is the solution of $\lambda \sum_{i=1}^{n} \max\{a_i - x, 0\}$
= $\sum_{i=1}^{n} \max\{x - a_i, 0\}$, and we have that $x^{R^*} = x_1^{R^*} = \dots = x_n^{R^*}$.

Concluding this subsection, we note that the distribution chosen by a RSP entails equality of incomes even when $\beta = 0$, namely, even if individuals' concern at having low relative income is excluded from the RSP's social welfare function.