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a r t i c l e i n f o

Article history:
Subsection 3.1. (pp. 441–442) of the originally published article
analyzes the optimal choice of a Rawlsian social planner (RSP). The
originally published subsection did not cover all possible cases, and
the proof that a RSP will choose to equalize incomes is incomplete.
The text that follows replaces that subsection.

3.1. The maximization problem of a Rawlsian social planner

The maximization problem of a RSP is
max

�(a1,...,an;λ)
SWFR(x1,...,xn)

= max
�(a1,...,an;λ)


min{u1(x1,...,xn),...,un(x1,...,xn)}


. (3)

It is easy to see that for every k∈{1,...,n−1} we have that
ui(x1,...,xk,xk+1,...,xn)=ui(x1,...,xk+1,xk,...,xn)
for i∈{1,...,n}\{k,k+1}, and that
uk(x1,...,xk,xk+1,...,xn)=uk+1(x1,...,xk+1,xk,...,xn).
Therefore, if x1≤...≤xn, then the monotonicity of the f function
and the definition of the RI function imply that u1(x1,...,xn)
≤ u2(x1,...,xn)≤ ...≤ un(x1,...,xn). Thus, for any k such that
yk=min{y1,...,yn}, we have that SWFR(y1,...,yn)=uk(y1,...,yn).

Denoting by (xR
∗

1 ,...,xR
∗

n ) the optimal post-transfer distribution
of incomes of a RSP, we have that

max
�(a1,...,an;λ)

SWFR(x1,...,xn)=u1(xR
∗

1 ,...,xR
∗

n ),
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where xR
∗

1 = ...=xR
∗

n . We prove this claim by contradiction. To
do that, we assume that (xR

∗

1 ,...,xR
∗

n )∈�(a1,...,an;λ) is such
that x=min{xR

∗

1 ,...,xR
∗

n }<max{xR
∗

1 ,...,xR
∗

n }, and we show that
there exists (y1,...,yn)∈�(a1,...,an;λ) such that SWFR(y1,...,yn)
>SWFR(xR

∗

1 ,...,xR
∗

n ). Therefore, (xR
∗

1 ,...,xR
∗

n ) cannot be amaximum.
Let I={i∈{1,...,n} :xR

∗

i =x∧xR
∗

i ≥ai}, J ={i∈{1,...,n} :xR
∗

i =x
∧xR

∗

i <ai}, x̄=min{xi :i∉I∪J}, k=min{i∈{1,...,n}:xR
∗

i =x̄}, K=I∪J
∪{k}, and h=|I∪J|, where the notation |A| stands for the
cardinality of the set A. Obviously, from the characteristics of the
point (xR

∗

1 ,...,xR
∗

n ), it follows that I∪J ≠∅ and that h≥1. Let δ

be such that 0<δ<min

λ(x̄−x)/2, min

i∈K :ai≠xR
∗

i

ai−xR
∗

i

. We now

define the coordinates of the point (y1,...,yn) as

yi=


xR

∗

i +δ/h for i∈I∪J,
xR

∗

i −δk for i=k,
xR

∗

i for i∈{1,...,n}\K ,

where δk =δ(|I|+λ|J|)/(λh) if xR
∗

k ≤ak, and δk =δ(|I|+λ|J|)/h
otherwise. It is easy to verify that (y1,...,yn)∈�(a1,...,an;λ).

Because the f function is an increasing function, and because a
smaller difference between incomes implies a smaller value of the
index of low relative income, it follows that for any i∈I∪J

SWFR(y1,...,yn)−SWFR(xR
∗

1 ,...,xR
∗

n )

=ui(y1,...,yn)−ui(xR
∗

1 ,...,xR
∗

n )

=(1−β)

f (xR

∗

i +δ/h)−f (xR
∗

i )


−β

RI(xR

∗

i +δ/h;y1,...,yn)−RI(xR
∗

i ;xR
∗

1 ,...,xR
∗

n )

>0
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for any β ∈ [0,1) and 0< λ ≤ 1. Therefore, SWFR(y1,...,yn)
>SWFR(xR

∗

1 ,...,xR
∗

n ), which contradicts the fact that SWFR attains
a global maximum at (xR

∗

1 ,...,xR
∗

n ). Thus, the solution of the prob-
lem of a Rawlsian social planner, (3), has to be a transfer such that
the post-transfer incomes are all equal. This completes the proof
by contradiction.

It is worth noting that the solution of (3) is unique. To show this,
we assume that a1<an, and we let

g(x)=

n
i=1

max{x−ai,0}

n
i=1

max{ai−x,0}
for x∈[a1,an). Then, as a ratio of a continuous, strictly increasing
function and a continuous, strictly decreasing and positive
function, g is continuous and strictly increasing, and g(a1)=0,
lim
x→an

g(x)=∞. Therefore, there exists a unique xR
∗

∈ (a1,an)

such that g(xR
∗

)=λ, which is the solution of λ
n

i=1
max{ai−x,0}

=

n
i=1

max{x−ai,0}, and we have that xR
∗

=xR
∗

1 =...=xR
∗

n .

Concluding this subsection, we note that the distribution
chosen by a RSP entails equality of incomes even when β =0,
namely, even if individuals’ concern at having low relative income
is excluded from the RSP’s social welfare function.
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